Covid-19 Spike

Les chercheurs de la Washington University School of Medicine de St. Louis ont découvert une nouvelle voie d’infection du Covid-19 qui pourrait changer notre combat contre ce virus.

Normalement, pour infecter son hôte, le virus SARS-CoV-2 s’attache à une protéine présente à la surface des cellules, notamment pulmonaires. Il s’agit du fameux récepteur ACE2.

L’ACE2 est une protéine clé dans la physiologie du virus Covid-19. Cette protéine est absolument nécessaire pour l’entrée du virus SARS-CoV-2 dans les cellules de l’hôte.

Une nouvelle mutation du virus, découverte tout récemment, serait capable de pénétrer dans les cellules, et cela non pas par le récepteur ACE2, comme d’habitude, mais par une autre voie. Étant donné que tous les vaccins Covid-19 et les anticorps thérapeutiques visent la protéine Spike et le passage du récepteur ACE2 dans les cellules, cette nouvelle capacité du virus pourrait changer les voies d’infection et notre combat vaccinal. Cette nouvelle voie d’infection du Covid-19 aurait la capacité de mettre en question tous nos efforts !

Quelles pourraient être les conséquences de cette seconde voie d’infection possible sur la propagation du Covid-19 et sur les vaccins existants ?

Lire la suite …

ADN, Génétique

À l’heure où nous produisons de plus en plus de données et où se pose la question de leur stockage, les biologistes s’intéressant à ce problème se sont tournés vers l’un des « disques durs » les plus compacts qui soient : l’ADN. On appelle cela le stockage in vitro et, par la suite, le stockage in vivo.

En effet, l’ADN qui est une macromolécule présente dans toutes les cellules, contient toute l’information nécessaire au bon fonctionnement et à la reproduction de celles-ci, encodées dans ses quatre bases A, C, G et T. Sur ce principe, ne pourrait-il pas contenir des données créées par l’être humain et utilisé comme un espace de stockage in vivo ? Avec des données encodées dans les bases de l’ADN comme elles le sont sous forme de 0 et de 1 dans un ordinateur, au sein du codage binaire ?

Depuis quelques années, de nombreuses recherches se penchent sur la possibilité de stocker des données dans l’ADN. Celui peut être in vivo (stockage au sein de la cellule vivante) ou in vitro (stockage en laboratoire dans des cellules vivantes de synthèse). Cette solution technologique serait, selon ses promoteurs, une piste pour répondre aux difficultés de stockage de données qui se poseront dans quelques années.

Lire la suite …

Réparation musculaire

Des muscles sains sont une partie importante d’une vie saine, même à un âge plus avancé. Mais avec l’usure due à l’utilisation quotidienne et permanente, une réparation musculaire continue s’impose au sein de tout notre organisme. Nos muscles sont obligés à se réparer constamment pour garder leur forme et pouvoir assurer leur activité parfaite.

Ce n’est qu’au cours des dernières années que la recherche scientifique a commencé à comprendre le fonctionnement et le déroulement exact de la réparation musculaire au niveau cellulaire. Une équipe de recherche japonaise a réussi à prouver maintenant que le glucose (sucre) disponible au sein de notre organisme semble avoir une influence décisive sur ce processus vital.

Ces chercheurs de l’Université de Tokyo suggèrent que de faibles taux de glucose peuvent favoriser la réparation musculaire. Dans une étude récente, l’équipe a découvert que les cellules satellites des muscles squelettiques, qui jouent un rôle clé dans la réparation musculaire, fonctionnent mieux dans les environnements à faible taux de glucose. 

Lire la suite …

Cellule T - Lymphocyte 

La cellule est l’unité biologique structurelle et fonctionnelle fondamentale de tous les êtres vivants connus. C’est la plus petite unité vivante capable de se reproduire de façon autonome. Elle est l’élément fonctionnel et structural qui compose les tissus et organes des êtres vivants. Elle contient l’information génétique de l’individu et est à l’origine de la création biologique.

Tout généralement, les scientifiques distinguent deux grands groupes de substances :

La matière organique est formée de substances fabriquées par les êtres vivants, riches en atomes de carbone, hydrogène, oxygène et azote. Les glucides, protides et lipides sont des substances caractéristiques de la matière organique. Ce sont les cellules.

La matière minérale et inorganique, formée de substances non vivantes : les roches et les sels minéraux, l’eau, les substances contenues dans l’air comme le dioxyde de carbone. Le calcium, le magnésium, le fer etc. sont des minéraux importants pour notre santé.

Lire la suite …

Viande rouge

De manière générale, on peut dire que chaque surcharge quelconque génère du stress oxydatif pour l’organisme. Le stress oxydatif est synonyme d’une oxydation cellulaire.

Cette surcharge est très souvent d’abord exogène (venu de sources extérieures) et se convertit ensuite en surcharge endogène (intérieur) par le métabolisme, quand notre organisme essaie de digérer ou de se débarrasser des toxiques ingérés.

Lire la suite …

Homéostasie cellulaire

L’homéostasie est tout généralement la capacité que peut avoir un système quelconque (ouvert ou fermé) à conserver son équilibre de fonctionnement en dépit des contraintes qui lui sont extérieures. L’homéostasie est l’équilibre dynamique qui nous maintient en vie. L’homéostasie cellulaire est la maintenance de l’ensemble des paramètres physico-chimiques de l’organisme

Lire la suite …

Molécule ATP

Le tissu musculaire est constitué de milliers de cellules de forme allongée, appelées fibres musculaires. Ces fibres sont regroupées en paquets ou faisceaux.

Toutes ces cellules musculaires – mais pas seulement dans les muscles, toutes les cellules de notre organisme sont concernées – ont besoin constamment et sans interruption de l’énergie pour garantir leur survie. Cette énergie est fournie par l’ ATP, ou adénosine triphosphate.

Chez l’humain, l’ ATP constitue la seule énergie utilisable par le muscle. Toutes les cellules sont capables d’utiliser le glucose, mais ce n’est pas la seule source pour la production de l’ATP. 

Lire la suite …

Hyperplasie cellulaire

L’ hyperplasie cellulaire est l’augmentation anormale du nombre de cellules d’un tissu ou d’un organe, sans modification de l’architecture, résultant habituellement en l’augmentation de volume du tissu ou de l’organe concerné.

Elle est habituellement témoin d’une hyperactivité fonctionnelle. On observera la différence à l’hypertrophie où ce n’est pas le nombre, mais le volume des cellules qui augmente.

Lire la suite …

L’ hypoplasie est un arrêt de développement ou un développement insuffisant d’un tissu ou d’un organe. Ceci aboutit à un organe fonctionnel, mais trop petit.

Par contre, l’aplasie désigne un dysfonctionnement des cellules ou des tissus qui aboutit à l’arrêt de leur développement. L’aplasie peut également être l’absence complète d’un organe provoquée par le manque de développement de son ébauche embryonnaire, et par extension, l’arrêt transitoire ou définitif de la multiplication cellulaire dans un tissu qui devrait normalement se renouveler en permanence. L’organe ne se développe donc plus après la naissance. Ceci peut jouer un rôle vital ou non, dépendant de l’organe manquant. Par exemple, l’aplasie de la vésicule biliaire, d’un rein ou des organes sexuels n’a pas d’incident sur l’espérance de vie.Lire la suite …

Fibroblaste avec noyau

Au sein des organismes multicellulaires, les cellules se spécialisent en différents types cellulaires adaptés chacun à des fonctions physiologiques particulières : c’est la spécialisation cellulaire. Chez les mammifères et les humains, comme résultat de cette spécialisation cellulaire, on trouve par exemple des cellules de la peau, des myocites (cellules musculaires), des neurones (cellules nerveuses), des

Lire la suite …

Toutes les cellules, à l’exception des hématies (globules rouges), des cellules nerveuses et des fibres musculaires squelettiques, sont susceptibles de se diviser, c’est-à-dire de former par mitose deux cellules filles ayant les mêmes caractères morphologiques et physiologiques que la cellule mère: c’est la division cellulaire. La division cellulaire permet aux

Lire la suite …

Neurones

Les besoins de la cellule sont multiples : chaque cellule de chaque organisme vivant a besoin, par exemple pour renouveler ses constituants ou fabriquer des substances vitales, de nutriments (glucose, acides aminés, acides gras, etc.) qui constituent la matière première, et d’énergie chimique. On appelle métabolisme cellulaire l’ensemble des réactions

Lire la suite …

Nécrose cellulaire

Par définition, la mort cellulaire désigne le processus au cours duquel une cellule meurt et est détruite. Il existe différents types des morts cellulaires ; on y trouve la nécrose cellulaire, l’apoptose ou l’autophagie. On parle de mort cellulaire à partir du moment où les fonctions vitales et les réactions chimiques de son métabolisme ont cessé.

L’apoptose est la mort cellulaire programmée. C’est le processus par lequel des cellules déclenchent leur auto-destruction en réponse à un signal. C’est l’une des voies possibles de la mort cellulaire, qui est physiologique, génétiquement programmée, nécessaire à la survie des organismes multicellulaires.

Elle est en équilibre constant avec la prolifération cellulaire. Contrairement à la nécrose qui elle est une mort cellulaire prématurée, elle ne provoque pas d’inflammation : les membranes plasmiques ne sont pas détruites, du moins dans un premier temps, et la cellule émet des signaux qui permettront sa phagocytose par des globules blancs, notamment des macrophages.

La nécrose cellulaire désigne une mort occasionnée par des altérations chimiques ou physiques, souvent venant de l’extérieur comme un accident. Il s’agit d’une forme de dégât cellulaire qui est toujours irréversible.

L’autophagie par contre est une dégradation d’une partie du cytoplasme de la cellule.

Lire la suite …